Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | \(g_{9}+5/9g_{8}+8/9g_{4}\) | \(g_{2}\) | \(-g_{14}+8/5g_{10}\) | \(-g_{19}+8/5g_{16}\) | \(g_{24}\) | \(g_{23}\) |
weight | \(2\omega_{1}\) | \(2\omega_{2}\) | \(3\omega_{1}+\omega_{2}\) | \(6\omega_{1}\) | \(10\omega_{1}\) | \(9\omega_{1}+\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2) | \(\displaystyle V_{3\omega_{1}+\omega_{2}} \) → (3, 1) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0) | \(\displaystyle V_{10\omega_{1}} \) → (10, 0) | \(\displaystyle V_{9\omega_{1}+\omega_{2}} \) → (9, 1) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(3\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | \(9\omega_{1}+\omega_{2}\) \(7\omega_{1}+\omega_{2}\) \(9\omega_{1}-\omega_{2}\) \(5\omega_{1}+\omega_{2}\) \(7\omega_{1}-\omega_{2}\) \(3\omega_{1}+\omega_{2}\) \(5\omega_{1}-\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-5\omega_{1}+\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) \(-7\omega_{1}+\omega_{2}\) \(-5\omega_{1}-\omega_{2}\) \(-9\omega_{1}+\omega_{2}\) \(-7\omega_{1}-\omega_{2}\) \(-9\omega_{1}-\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(3\omega_{1}+\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | \(9\omega_{1}+\omega_{2}\) \(7\omega_{1}+\omega_{2}\) \(9\omega_{1}-\omega_{2}\) \(5\omega_{1}+\omega_{2}\) \(7\omega_{1}-\omega_{2}\) \(3\omega_{1}+\omega_{2}\) \(5\omega_{1}-\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-5\omega_{1}+\omega_{2}\) \(-3\omega_{1}-\omega_{2}\) \(-7\omega_{1}+\omega_{2}\) \(-5\omega_{1}-\omega_{2}\) \(-9\omega_{1}+\omega_{2}\) \(-7\omega_{1}-\omega_{2}\) \(-9\omega_{1}-\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{3\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}}\oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | \(\displaystyle M_{9\omega_{1}+\omega_{2}}\oplus M_{7\omega_{1}+\omega_{2}}\oplus M_{9\omega_{1}-\omega_{2}}\oplus M_{5\omega_{1}+\omega_{2}} \oplus M_{7\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}+\omega_{2}}\oplus M_{5\omega_{1}-\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}} \oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-5\omega_{1}+\omega_{2}}\oplus M_{-3\omega_{1}-\omega_{2}}\oplus M_{-7\omega_{1}+\omega_{2}} \oplus M_{-5\omega_{1}-\omega_{2}}\oplus M_{-9\omega_{1}+\omega_{2}}\oplus M_{-7\omega_{1}-\omega_{2}}\oplus M_{-9\omega_{1}-\omega_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{3\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}}\oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | \(\displaystyle M_{9\omega_{1}+\omega_{2}}\oplus M_{7\omega_{1}+\omega_{2}}\oplus M_{9\omega_{1}-\omega_{2}}\oplus M_{5\omega_{1}+\omega_{2}} \oplus M_{7\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}+\omega_{2}}\oplus M_{5\omega_{1}-\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}} \oplus M_{3\omega_{1}-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-5\omega_{1}+\omega_{2}}\oplus M_{-3\omega_{1}-\omega_{2}}\oplus M_{-7\omega_{1}+\omega_{2}} \oplus M_{-5\omega_{1}-\omega_{2}}\oplus M_{-9\omega_{1}+\omega_{2}}\oplus M_{-7\omega_{1}-\omega_{2}}\oplus M_{-9\omega_{1}-\omega_{2}}\) |